Evaluating surface ozonetemperature relationships over the eastern U.S. in chemistry-climate models

D.J. Rasmussen, Arlene Fiore, Vaishali Naik, Larry Horowitz (GFDL/NOAA), Sean McGinnis (Princeton), and Martin Schultz (Forschungszentrum Jülich)

A GFDL Lunchtime Seminar August 17th, 2011

The U.S. O₃ problem: over 150 million people breathe air deemed unhealthy by EPA

Counties With Monitors Violating the March 2008 Ground-Level Ozone Standards

About 1 in 2 people in the U.S. live in these areas

[*EPA*, 2010]

the 3-year average of the fourth-highest daily maximum 8-hour average ozone concentrations measured at each monitor within an area over each year must not exceed 0.075 ppm. (effective May 27, 2008)

^(*) To attain this standard:

Presentation Outline

- Implications for air quality response to climate change
- Characterizing the O₃-temperature relationship over the eastern US
- How well does a chemistry-climate model represent this relationship, particularly in light of a modeled summertime O₃ bias over this region?
- Do biases in surface temperature contribute to this modeled O₃ bias?

Surface O₃ varies strongly with temperature

Observational studies have shown strong correlation between surface temperature and O_3 concentrations (Bloomer et al., 2009; Camalier et al., 2007; Cardelino and Chameides, 1990; Clark and Karl, 1982; Korsog and Wolff, 1991)

Avg. July Daily Max 8-hour O₃ and 10am-5pm Temp.

Year-to-year temperatures have been observed to be strongly correlated with ozone

Strong relationship between weather and pollution implies that changes in climate will influence air quality

Severe O₃ pollution events associated with air stagnation in Europe

Stagnant high pressure system over Europe (500 hPa geopotential anomaly relative to 1979-1995 for 2-14 August, NCEP)

Correlation between surface O₃ and temperature is strongly associated with air stagnation

What does a warming planet imply for surface O₃ in the eastern US?

Higher temperatures, stagnation

- Models agree that 2000-2050 climate change will increase surface ozone most over polluted regions (3-5 ppb).
- Most models find climate change will exacerbate pollution episodes (up to 10 ppb) due to increased stagnation and higher temperatures.
- Models fairly robust in simulating O₃ increases in Northeast and Midwest U.S.

Current generation global models

How accurate are these models at reproducing observed seasonal O₃ concentrations?

Obs. = black Ensemble mean/median = red/blue

- A pervasive high summertime O₃
 bias exists across both eastern US
 regions [A.M. Fiore, L.W. Horowitz et al., 2009;
 Murazaki and Hess, 2006; Reidmiller et al., 2009]
- These biases raise concern of the ability of chemistry-climate models to project accurately the response of air pollution to climate change

Motivating Questions

- 1) Can we characterize long-term O_3 response to year-to-year temperatures for regions over the eastern US for purposes of chemistry-climate model evaluation?
- 2) Despite a known modeled ozone bias, can the GFDL AM3 chemistry-climate model represent the *response* of surface O₃ to interannual variations in temperature?
- 3) Do modeled temperature biases contribute to these modeled ozone biases?

We hypothesize that:

Adequate representation of observed, climatological O_3 -temperature relationships will help to build confidence in future projections of the air quality response to changes in climate

Representing the O₃ – temperature relationship

We use temperature as a proxy to synthesize the complex effects of meteorological and chemical factors influencing O₃ concentrations

We represent these aggregate effects as a total derivative, $\frac{d[O_3]}{dT}$

The O₃-temperature relationship is thought to represent at least three components in the eastern US:

meteorology

chemistry

emissions

Over what range of temperatures does O₃ increase?

Ozone's relationship with temperature is non-linear, but it has been observed to be linear for ranges of temperatures...

O₃ found to typically increase linearly between 290-305 K

[Bloomer et al., 2009; Camalier et al., 2007; Sillman and Samson, 1995; Steiner et al., 2010]

Observation network

EPA CASTNet sites used and locations:

Observations: EPA Clean Air Status and Trends Network (CASTNet; designed for measurements to be representative of the regional scale)

Most sites have record lengths spanning 1988-2009

statistical approach to the O₃-temp relationship

We focus on the warm season over the eastern US where O_3 and temperature are well correlated [Dawson et al., 2007; Lin et al., 2001; Sillman and Samson, 1995]

We use maximum daily 8-hour average (MDA8) O_3 and maximum daily surface temperature (T_{max}) to focus on the daytime (deep, well-mixed, boundary layer)

Humans can influence O₃ sensitivity to temperature by changing the O₃ production chemistry

$$\frac{CO}{VOC}$$
 + Sunlight = O_3

National Ozone Season NO_x Emissions from Power Plants

Changes to anthropogenic NO_x emissions have a substantial effect on the sensitivity of O₃ to temperature

effects of NO_x emission controls on O₃ sensitivity

- Δ NOx emissions decreased ozone levels over the entire distribution
- The ozone sensitivities to temperature also decreased across the distribution
- Different statistical methods reveal the same 1 ppb O₃ K⁻¹ decrease during O₃ season

AM3 simulations

- We use a 20-year (1981—2000) run of the GFDL AM3 CCM [Donner et al., 2011; Naik et al., in prep]
 - Interactive isoprene (responds to solar radiation and temperature) (MEGAN) following that used in MOZART-4 [Emmons et al., 2010]
 - Forcings:
 - Observed SSTs and sea ice [Rayner et al., 2003]
 - ACCMIP aerosol and O3 precursor emissions (as used in CM3 CMIP5 simulations) [Lamarque et al., 2010]

Little to no change in eastern US NO_x emissions in model run

	1980	1990	2000
NO _x	4.23 Tg N	4.40 Tg N	4.29 Tg N

"climatological" O₃-temperature relationships

correlating MDA8 O₃ and daily T_{max}

correlations too low in southern US

-problem representing inflow of marine air, convective ventilation, isoprene chemistry in this region?

"climatological" O₃-temperature relationships

GFDL AM3 produces range of m_{O3-T} over Northeast and portions of the Great Lakes

Remains unclear why GFDL AM3 struggles in Mid-Atlantic and southern US

Regional approach to characterizing O₃-temperature relationships

We group CASTNet sites into chemically and meteorologically coherent regions

Motivated by past statistical analyses [Bloomer et al., 2009; Eder et al., 1993; Lehman et al., 2004]

Regional approach: Northeast

We average over all CASTNet sites to isolate the regional response of O₃ to temperature

Regional approach: Northeast

Large standard errors highlight the need for longer datasets

highest O₃ sensitivities to temperature in summer (4-5 ppb O₃ K⁻¹)

Regional approach: Northeast

Despite the presence of excess modeled MDA8 O₃...

MDA8 O_3 sensitivity to year-to-year variations in T_{max} are reproduced by GFDL AM3 in the Northeast

Regional approach: Mid-Atlantic

Again, we average over all CASTNet sites to isolate the regional response of O_3 to temperature

Regional approach: Mid-Atlantic

Highest O₃ sensitivities to temperature are in summer (4-6 ppb O₃ K⁻¹)

Regional approach: Mid-Atlantic

Modeled t_{max} bias and O₃ sensitivity

 T_{max} biases are responsible for **up to 10-15 ppb** of the summer O_3 bias, specifically in the interior of the Mid-Atlantic region

> cannot be the major driver of the large-scale O₃ bias

Conclusions

Despite modeled O_3 biases, the GFDL AM3 reproduces m_{O3-T} in the Northeast, although it underestimates m_{O3-T} by 2–4 ppb K^{-1} in the summer over the Mid-Atlantic

➤ model skill at simulating fundamental meteorological processes may be contributing to the inaccuracies in producing m_{O3-T} over the Mid-Atlantic

We estimate a maximum contribution of 10–15 ppb MDA8 O_3 from simulated T_{max} biases over the Mid-Atlantic

➤ We find modeled (+) T_{max} biases are not the major driver of the large-scale excess modeled O₃

evaluating modeled diurnal temperature and O₃

When diurnal temperature biases are highest, are the O_3 biases correspondingly highest?

Why does the model struggle in the southeastern US?

Fundamentally different meteorological processes modulate O_3 levels in the southern and northern halves of the eastern US:

- In the Northeast: pollutant ventilation is known to be driven by migratory cyclones associated with cold fronts [Leibensperger et al., 2008; Logan, 1989, Vukovich, 1995]
- In the Southeast: Deep convection and inflow from the Gulf of Mexico are known to ventilate O_3 in the boundary layer [Li et al., 2005]

cyclonic ventilation of the eastern U.S.

 The skill of the GFDL AM3 chemistry-climate model in simulating these meteorological processes may be help explain why O3-temp sensitivities are not accurately produced

GFDL AM3 CCM eastern U.S. summertime O₃ bias

GFDL AM3 CCM has a high O₃ bias in summer months in the eastern U.S. [10-30 ppb]

June monthly mean MDA8 O₃ Bias (GFDL minus CASTNet)

Spatial distribution of NA tropospheric NO₂

Biogenic VOC (isoprene) column measurements

Emissions of VOCs spatially vary

Switches polluted areas in U.S. from NO_x -saturated to NO_x -limited regime! recognized in Revised Clean Air Act of 1999

Jacob et al., J. Geophys. Res. [1993]

(1) Regional stagnation/ventilation

[Manhattan, NY]

cyclonic ventilation of the eastern U.S.

(2) PAN chemistry, (3) biogenic emissions

(2) the amount of NO_x (NO+NO₂) sequestered by peroxyacetyl nitrate (PAN) decreases with increasing temperature

(3) Emissions (biogenic depend strongly on temperature)

Why is O₃ relevant to climate?

Ozone (O₃) in the atmosphere

